The aim of this article is to verify the ability of goodness-of-fit tests (GoFTs) to detect deviations from normality. A very special case was considered: when the deviation from normality is obtained by means of symmetric distributions with low values of excess kurtosis. The first step in fulfilling the aim was to collect a set of normality-oriented tests that the source literature, especially the recent publications, recommends for use. The second step was to create a family of symmetric distributions with non-constant excess kurtosis, i.e. alternatives. Formulas for calculating the values of excess kurtosis are provided for each distribution. A relevant similarity measure was applied to compare the alternatives with the normal distribution. The third step involved carrying out a Monte Carlo simulation. The study used 20 GoFTs and 30 alternatives. The obtained results indicate that the considered GoFTs detect deviation from normality in distributions of positive excess kurtosis much better than those of negative excess kurtosis. The paper presents a set of recommended GoFTs most useful for the discussed purpose.
normal distribution, goodness-of-fit testing, excess kurtosis modelling
C12, C13, C15
Afeez, B. M., Maxwell, O., Otekunrin, O. A., & Happiness, O.-I. (2018). Selection and Validation of Comparative Study of Normality Test. American Journal of Mathematics and Statistics, 8(6), 190–201. https://doi.org/10.5923/j.ajms.20180806.05.
Ahmad, F., & Khan, R. A. (2015). Power Comparison of Various Normality Tests. Pakistan Journal of Statistics and Operation Research, 11(3), 331–345. https://doi.org/10.18187/pjsor.v11i3.845.
Aliaga, A. M., Martinez-González, E., Cayón, L., Argüeso, F., Sanz, J. L., & Barreiro, R. B. (2003). Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data. New Astronomy Reviews, 47(8–10), 821–826. https://doi.org/10.1016/j.newar.2003.07.010.
Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes. The Annals of Mathematical Statistics, 23(2), 193–212. https://doi.org/10.1214/aoms/1177729437.
Arnastauskaite, J., Ruzgas, T., & Braženas, M. (2021). An Exhaustive Power Comparison of Normality Tests. Mathematics, 9(7), 1–20. https://doi.org/10.3390/math9070788.
Barndorff-Nielsen, O. E. (1997). Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling. Scandinavian Journal of Statistics, 24(1), 1–13. https://doi.org/10.1111/1467-9469.00045.
Bayoud, H. A. (2021). Tests of normality: new test and comparative study. Communications in Statistics – Simulation and Computation, 50(12), 4442–4463. https://doi.org/10.1080/03610918.2019.1643883.
Bolfarine, H., Martínez-Flórez, G., & Salinas, H. S. (2018). Bimodal symmetric-asymmetric power-normal families. Communications in Statistics – Theory and Methods, 47(2), 259–276. https://doi.org/10.1080/03610926.2013.765475.
Bonett, D. G., & Seier, E. (2002). A test of normality with high uniform power. Computational Statistics & Data Analysis, 40(3), 435–445. https://doi.org/10.1016/S0167-9473(02)00074-9.
Bontemps, C., & Meddahi, N. (2005). Testing normality: a GMM approach. Journal of Econometrics, 124(1), 149–186. https://doi.org/10.1016/j.jeconom.2004.02.014.
Böhning, D., & Ruangroj, R. (2002). A note on the maximum deviation of the scale-contaminated normal to the best normal distribution. Metrika, 55(3), 177–182. https://doi.org/10.1007/s001840100138.
Brys, G., Hubert, M., & Struyf, A. (2008). Goodness-of-fit tests based on a robust measure of skewness. Computational Statistics, 23(3), 429–442. https://doi.org/10.1007/s00180-007-0083-7.
Champernowne, D. G. (1952). The graduation of income distributions. Econometrica. Journal of the Econometric Society, 20(4), 591–615. https://doi.org/10.2307/1907644.
Chen, L., & Shapiro, S. S. (1995). An alternative test for normality based on normalized spacings. Journal of Statistical Computation and Simulation, 53(3–4), 269–287. https://doi.org/10.1080/00949659508811711.
Coin, D. (2008). A goodness-of-fit test for normality based on polynomial regression. Computational statistics & data analysis, 52(4), 2185–2198. https://doi.org/10.1016/j.csda.2007.07.012.
Cramer, H. (1928). On the composition of elementary errors. Scandinavian Actuarial Journal, (1), 13–74. https://doi.org/10.1080/03461238.1928.10416862.
D’Agostino, R. B. (1970). Transformation to normality of the null distribution of ????1. Biometrika, 57(3), 679–681. https://doi.org/10.1093/biomet/57.3.679.
D’gostino, R. B., & Pearson, E. S. (1973). Tests for departure from normality. Empirical results for the distributions of ????2 and ??????1. Biometrika, 60(3), 613–622. https://doi.org/10.1093/biomet/60.3.613.
Desgagné, A., & Lafaye de Micheaux, P. (2018). A powerful and interpretable alternative to the Jarque-Bera test of normality based on 2nd-power Skewness and Kurtosis, using the Rao’s Score Test on the APD family. Journal of Applied Statistics, 45(13), 2307–2327. https://doi.org/10.1080/02664763.2017.1415311.
Desgagné, A., Lafaye de Micheaux, P., & Ouimet, F. (2022). Goodness-of-fit tests for Laplace, Gaussian and exponential power distributions based on ?-th power skewness and kurtosis. Statistics, 57(1), 94–122. https://doi.org/10.1080/02331888.2022.2144859.
Gel, Y. R., & Gastwirth, J. L. (2008). A robust modification of the Jarque–Bera test of normality. Economics Letters, 99(1), 30–32. https://doi.org/10.1016/j.econlet.2007.05.022.
Gel, Y. R., Miao, W., & Gastwirth, J. L. (2007). Robust Directed Tests of Normality against Heavy-tailed Alternatives. Computational Statistics & Data Analysis, 51(5), 2734–2746. https://doi.org/10.1016/j.csda.2006.08.022.
Giller, G. L. (2005). A Generalized Error Distribution. http://dx.doi.org/10.2139/ssrn.2265027.
Gleason, J. R. (1993). Understanding Elongation: The Scale Contaminated Normal Family. Journal of the American Statistical Association, 88(421), 327–337. https://doi.org/10.1080/01621459.1993.10594325.
Hall, P. (1927). The distribution of means for samples of size n drawn from a population in which the variate takes values between 0 and 1, all such values being equally probable. Biometrika, 19(3–4), 240–245. https://doi.org/10.1093/biomet/19.3-4.240.
Hassan, M. Y., & El-Bassiouni, M. Y. (2016). Bimodal skew-symmetric normal distribution. Communications in Statistics-Theory and Methods, 45(5), 1527–1541. https://doi.org/10.1080/03610926.2014.882950.
Hassan, M. Y., & Hijazi, R. H. (2010). A bimodal exponential power distribution. Pakistan Journal of Statistics, 26(2), 379–396. https://pharmacy.aau.ac.ae/uploads/2018/12/201812051148392.pdf.
Hernandez, H. (2021). Testing for Normality: What is the Best Method. ForsChem Research Reports, 6(5), 101–138. https://doi.org/10.13140/RG.2.2.13926.14406.
Hosking, J. R. M. (1990). L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. Journal of the Royal Statistical Society. Series B (Methodological), 52(1), 105–124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x.
Irwin, J. O. (1927). On the frequency distribution of the means of samples from a population having any law of frequency with finite moments, with special reference to Pearson’s Type II. Biometrika, 19(3–4), 225–239. https://doi.org/10.1093/biomet/19.3-4.225.
Jarque, C. M., & Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. International Statistical Review, 55(2), 163–172. https://doi.org/10.2307/1403192.
Johnson, N. L. (1949). System of frequency curves generated by methods of translation. Biometrika, 36(102), 149–176. https://doi.org/10.2307/2332539.
Kellner, J., & Celisse, A. (2019). A one-sample test for normality with kernel methods. Bernoulli, 25(3), 1816–1837. https://doi.org/10.3150/18-BEJ1037.
Khatun, N. (2021). Applications of Normality test in Statistical Analysis. Open Journal of Statistics, 11(1), 113–122. https://doi.org/10.4236/ojs.2021.111006.
Kim, H. J. (2005). On a class of two-piece skew-normal distributions. Statistics, 39(6), 537–553. https://doi.org/10.1080/02331880500366027.
Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distributione. In F. P. Cantelli (Ed.), Giornale Dell’Istituto Italiano Degli Attuari, (pp. 83–91). Istituto italiano degli attuari.
Lafaye de Micheaux, P. L., & Tran, V. A. (2016). PoweR: A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R. Journal of Statistical Software, 69(3), 1–44. https://doi.org/10.18637/jss.v069.i03.
Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), 399–402. https://doi.org/10.1080/01621459.1967.10482916.
Malachov, A. N. (1978). A cumulant analysis of random non-Gaussian processes and their transformations (in Russian). Russia, Moscow: Sovetskoye Radio.
Marange, C. S., & Qin, Y. (2019). An Empirical Likelihood Ratio Based Comparative Study on tests for Normality of Residuals in Linear Models. Metodoloski zvezki, 16(1), 1–16. https://doi.org/10.51936/ramh7128.
Mbah, A. K., & Paothong, A. (2015). Shapiro-Francia test compared to other normality test using expected p-value. Journal of Statistical Computation and Simulation, 85(15), 3002–3016. https://doi.org/10.1080/00949655.2014.947986.
Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive Statistics and Normality Tests for Statistical Data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18.
Nosakhare, U. H., & Bright, A. F. (2017). Evaluation of Techniques for Univariate Normality Test Using Monte Carlo Simulation. American Journal of Theoretical and Applied Statistics, 6(5–1), 51–61. https://doi.org/10.11648/j.ajtas.s.2017060501.18.
Noughabi, H. A., & Arghami, N. R. (2011). Monte Carlo comparison of seven normality tests. Journal of Statistical Computation and Simulation, 81(8), 965–972. https://doi.org/10.1080/00949650903580047.
Pearson, K. (1916). IX. Mathematical contributions to the Theory of Evolution.–XIX. Second Supplement to a Memoir on Skew Variation. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 216(538–548), 429–457. https://doi.org/10.1098/rsta.1916.0009.
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33. https://www.nrc.gov/docs/ml1714/ml17143a100.pdf.
R Core Team. (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Retrieved May 15, 2023 from https://www.R-project.org/.
Rieck, J. R., & Nedelman, J. R. (1991). A log-linear model for the Birnbaum–Saunders distribution. Technometrics, 33(1), 51–60. https://doi.org/10.1080/00401706.1991.10484769.
Romão, X., Delgado, R., & Costa, A. (2010). An empirical power comparison of univariate goodness -of-fit tests for normality. Journal of Statistical Computation and Simulation, 80(5), 545–591. https://doi.org/10.1080/00949650902740824.
Ryan, T. A., & Joiner, B. L. (1976). Normal Probability Plots and Tests for Normality. The Pennsylvania State University.
Shapiro, S. S., & Francia, R. S. (1972). An approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215–216. https://doi.org/10.1080/01621459.1972.10481232.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete sample). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591.
Shapiro, S. S., Wilk, M. B., & Chen, H. J. (1968). A comparative study of various tests for normality. Journal of the American Statistical Association, 63(324), 1343–1372. https://doi.org/10.1080/01621459.1968.10480932.
Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The Annals of Mathematical Statistics, 19(2), 279–281. https://doi.org/10.1214/aoms/1177730256.
Subbotin, M. T. (1923). On the Law of Frequency of Error. Matematicheskii Sbornik, 31(2), 296–301. https://www.mathnet.ru/links/3e23e6ed0f6e62bff4cce2e4e2fe8c4b/sm6854.pdf.
Sulewski, P. (2019). Modification of Anderson-Darling goodness-of-fit test for normality. Afinidad, 76(588), 270–277. https://raco.cat/index.php/afinidad/article/view/361876.
Sulewski, P. (2020). Modified Lilliefors goodness-of-fit test for normality. Communications in Statistics – Simulation and Computation, 51(3), 1199–1219. https://doi.org/10.1080/03610918.2019.1664580.
Sulewski, P. (2021a). Two component modified Lilliefors test for normality. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 429–455. https://doi.org/10.24136/eq.2021.016.
Sulewski, P. (2021b). DS Normal Distribution: Properties and Applications. Lobachevskii Journal of Mathematics, 42(12), 2980–2999. https://doi.org/10.1134/S1995080221120337.
Sulewski, P. (2022). Normal distribution with plasticizing component. Communications in Statistics – Theory and Methods, 51(11), 3806–3835. https://doi.org/10.1080/03610926.2020.1837881.
Sulewski, P. (2023a). Easily Changeable Kurtosis Distribution. Austrian Journal of Statistics, 52(3), 1–24. https://doi.org/10.17713/ajs.v52i3.1434.
Sulewski, P. (2023b). The detectability of asymmetric distributions deviating from normality due to small skewness. Przegląd Statystyczny. Statistical Review, 70(1), 13–53. https://doi.org/10.59139/ps.2023.01.1.
Sulewski, P. (2024). Goodness-of-fit testing for normality where alternative distributions have undefined or constant skewness and excess kurtosis. Wiadomości Statystyczne. The Polish Statistician, 69(9), 1–28. https://doi.org/10.59139/ws.2024.09.1.
Tavakoli, M., Arghami, N., & Abbasnejad, M. (2019). A Goodness of Fit Test for Normality Based on Balakrishnan-Sanghvi Information. Journal of The Iranian Statistical Society, 18(1), 177–190. https://doi.org/10.29252/jirss.18.1.177.
Torabi, H., Montazeri, N. H., & Grané, A. (2016). A test of normality based on the empirical distribution function. SORT, 40(1), 55–88. https://doi.org/10.2436/20.8080.02.35.
Tsallis, C. (2009). Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. Springer. https://doi.org/10.1007/978-0-387-85359-8.
Tukey, J. W. (1960). The Practical Relationship Between the Common Transformations of Percentages or Fractions and of Amounts (vol. 36). Princeton University.
Uhm, T., Yi, S. (2021). A comparison of normality testing methods by empirical power and distribution of P-values. Communications in Statistics – Simulation and Computation, 52(9), 4445–4458. https://doi.org/10.1080/03610918.2021.1963450.
Urzúa, C. M. (1996). On the correct use of omnibus tests for normality. Economics Letters, 53(3), 247–251. https://doi.org/10.1016/S0165-1765(96)00923-8.
Uyanto, S. S. (2022). An Extensive Comparisons of 50 Univariate Goodness-of-fit Tests for Normality. Austrian Journal of Statistics, 51(3), 45–97. https://doi.org/10.17713/ajs.v51i3.1279.
Wijekularathna, D. K., Manage, A. B., & Scariano, S. M. (2020). Power analysis of several normality tests: A Monte Carlo simulation study. Communications in Statistics – Simulation and Computation, 51(3), 757–773. https://doi.org/10.1080/03610918.2019.1658780.
Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation, 81(12), 2141–2155. https://doi.org/10.1080/00949655.2010.520163 .
Yazici, B., & Yolacan, S. A. (2007). A comparison of various tests of normality. Journal of Statistical Computation and Simulation, 77(2), 175–183. https://doi.org/10.1080/10629360600678310.
Zhang, J. (2002). Powerful goodness-of-fit tests based on the likelihood ratio. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 64(2), 281–294. https://doi.org/10.1111/1467-9868.00337.