The aim of the paper is to examine goodness-of-fit testing for normality where alternative distributions have undefined or constant skewness and excess kurtosis. The first step involves collecting a set of normality-oriented goodness-of-fit tests (GoFTs) recommended for use in the source literature. The second step is to create a family of distributions with undefined or constant skewness and excess kurtosis. For greater clarity, the alternative distributions have been divided into three groups. Group I consisted of symmetric alternatives with undefined excess kurtosis, group II of symmetric alternatives with constant non-zero excess kurtosis, and group III comprised asymmetric alternatives with constants non-zero skewness and non-zero excess kurtosis. An appropriate similarity measure (SM) of a given alternative distribution to the normal distribution was applied. The third step involved a Monte Carlo simulation.
The obtained results indicate that the GoFT power for the analysed alternatives and for a given sample size remain relatively unchanged despite the significant decrease in SM. Several GoFTs proved incapable of making a distinction between normal distribution and the alternatives. This situation occurs even when SM equals 0.15. If SM equals 1, then the probability density functions (PDFs) are identical. The best tests for group I are the Gel-Miao-Gastwirth (SJ) and Robust Jarque- Bera (RJB) tests (positive excess kurtosis) as well as the Coin and Chen-Shapiro (CS) tests (negative excess kurtosis), for group II the SJ, 1st Hosking and RJB tests, while the Zhang-Wu (ZA) and CS tests are best for group III.
normal distribution, goodness-of-fit testing, excess kurtosis modelling
C12, C13, C15
Afeez, B. M., Maxwell, O., Otekunrin, O., & Happiness, O. (2018). Selection and Validation of Comparative Study of Normality Test. American Journal of Mathematics and Statistics, 8(6), 190– 201. https://doi.org/10.5923/j.ajms.20180806.05.
Ahmad, F., & Khan, R. A. (2015). Power Comparison of Various Normality Tests. Pakistan Journal of Statistics and Operation Research, 11(3), 331–345. https://doi.org/10.18187/pjsor.v11i3.845.
Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. The Annals of Mathematical Statistics, 23(2), 193–212. https://doi.org/10.1214/aoms/1177729437.
Arnastauskaite, J., Ruzgas, T., & Braženas, M. (2021). An Exhaustive Power Comparison of Normality Tests. Mathematics, 9(7), 1–20. https://doi.org/10.3390/math9070788.
Bayoud, H. A. (2021). Tests of normality: new test and comparative study. Communications in Statistics-Simulation and Computation, 50(12), 4442–4463. https://doi.org/10.1080/03610918.2019.1643883.
Bonett, D. G., & Seier, E. (2002). A test of normality with high uniform power. Computational Statistics & Data Analysis, 40(3), 435–445. https://doi.org/10.1016/S0167-9473(02)00074-9.
Cabana, A., & Cabana, E. M. (1994). Goodness-of-fit and comparison tests of the Kolmogorov- Smirnov type for bivariate populations. The Annals of Statistics, 22(3), 1447–1459. https://doi.org/10.1214/aos/1176325636.
Chen, Z., Shapiro, M., & Brumer, P. (1995). Interference control without laser coherence: Molecular photodissociation. The Journal of Chemical Physics, 102(14), 5683–5694. https://doi.org/10.1063/1.469299.
Coin, D. (2008). A goodness-of-fit test for normality based on polynomial regression. Computational Statistics & Data Analysis, 52(4), 2185–2198. https://doi.org/10.1016/j.csda.2007.07.012.
Cramér, H. (1928). On the composition of elementary errors. First paper: Mathematical deductions. Scandinavian Actuarial Journal, (1), 13–74. https://doi.org/10.1080/03461238.1928.10416862.
D’Agostino, R. B. (1971). An omnibus test of normality for moderate and large size samples. Biometrika, 58(2), 341–348. https://doi.org/10.1093/biomet/58.2.341.
D’Agostino, R., & Pearson, E. S. (1973). Tests for departure from normality. Empirical results for the distributions of b2 and? b1. Biometrika, 60(3), 613–622. https://doi.org/10.1093/biomet/60.3.613.
Desgagné, A., Lafaye de Micheaux, P. (2018). A powerful and interpretable alternative to the Jarque- Bera test of normality based on 2nd-power skewness and kurtosis, using the Rao’s Score Test on the APD family. Journal of Applied Statistics, 45(13), 2307–2327. https://doi.org/10.1080/02664763.2017.1415311.
Desgagné, A., Lafaye de Micheaux, P., & Ouimet, F. (2022). Goodness-of-fit tests for Laplace, Gaussian and exponential power distributions based on ?-th power skewness and kurtosis. Statistics. A Journal of Theoretical and Applied Statistics, 57(1), 94–122. https://doi.org/10.1080/02331888.2022.2144859.
Gel, Y. R., Miao, W., & Gastwirth, J. L. (2007). Robust Directed Tests of Normality against Heavytailed Alternatives. Computational Statistics & Data Analysis, 51(5), 2734–2746. https://doi.org/10.1016/j.csda.2006.08.022.
Hernandez, H. (2021). Testing for Normality: What is the Best Method? (ForsChem Research Reports, vol. 6, 2021-05). http://dx.doi.org/10.13140/RG.2.2.13926.14406.
Hosking, J. R. M. (1990). L-moments: Analysis and Estimation of Distributions using Linear Combinations of Order Statistics. Journal of the Royal Statistical Society. Series B: (Methodological), 52(1), 105–124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x.
Jarque, C. M., & Bera, A. K. (1987). A Test for Normality of Observations and Regression Residuals. International Statistical Review, 55(2), 163–172. https://doi.org/10.2307/1403192.
Kellner, J., & Celisse, A. (2019). A one-sample test for normality with kernel methods. Bernoulli, 25(3), 1816–1837.
Khatun, N. (2021). Applications of Normality Test in Statistical Analysis. Open Journal of Statistics, 11(1), 113–122. https://doi.org/10.4236/ojs.2021.111006.
Kolmogorov, A. (1933). Sulla determinazione empirica di unalegge di distributione. Giornale Dell’Istituto Italiano Degli Attuari, (4), 83–91.
Lafaye de Micheaux, P. L., & Tran, V. A. (2016). PoweR: A Reproducible Research Tool to Ease Monte Carlo Power Simulation Studies for Goodness-of-fit Tests in R. Journal of Statistical Software, 69(3), 1–44. https://doi.org/10.18637/jss.v069.i03.
LaRiccia, V. N. (1986). Optimal goodness-of-fit tests for normality against skewness and kurtosis alternatives. Journal of Statistical Planning and Inference, 13, 67–79. https://doi.org/10.1016/0378-3758(86)90120-5.
Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association, 62(318), 399–402. https://doi.org/10.2307/2283970.
Marange, C. S., & Qin, Y. (2019). An Empirical Likelihood Ratio Based Comparative Study on Tests for Normality of Residuals in Linear Models. Advances in Methodology and Statistics, 16(1), 1–16. https://doi.org/10.51936/ramh7128.
Mbah, A. K., & Paothong, A. (2015). Shapiro-Francia test compared to other normality test using expected p-value. Journal of Statistical Computation and Simulation, 85(15), 3002–3016. https://doi.org/10.1080/00949655.2014.947986.
Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive Statistics and Normality Tests for Statistical Data. Annals of Cardiac Anaesthesia, 22(1), 67–72. https://doi.org/10.4103/aca.ACA_157_18.
Nosakhare, U. H., & Bright, A. F. (2017). Evaluation of Techniques for Univariate Normality Test Using Monte Carlo Simulation. American Journal of Theoretical and Applied Statistics, 6(5–1), 51–61. https://doi.org/10.11648/j.ajtas.s.2017060501.18.
Noughabi, H. A., & Arghami, N. R. (2011). Monte Carlo comparison of seven normality tests. Journal of Statistical Computation and Simulation, 81(8), 965–972. https://doi.org/10.1080/00949650903580047.
Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. Journal of Statistical Modeling and Analytics, 2(1), 21–33.
Romao, X., Delgado, R., & Costa, A. (2010). An empirical power comparison of univariate goodnessof- fit tests for normality. Journal of Statistical Computation and Simulation, 80(5), 545–591. https://doi.org/10.1080/00949650902740824.
Ryan, T. A., & Joiner, B. L. (1976). Normal Probability Plots and Tests for Normality. Additive Soft. https://www.additive-net.de/de/component/jdownloads/send/70-support/236-normal-probability-plots-and-tests-for-normality-thomas-a-ryan-jr-bryan-l-joiner.
Shapiro, S. S., & Francia, R. S. (1972). Approximate analysis of variance test for normality. Journal of the American Statistical Association, 67(337), 215–216. https://doi.org/10.1080/01621459.1972.10481232.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3–4), 591–611. https://doi.org/10.1093/biomet/52.3-4.591.
Shapiro, S. S., Wilk, M. B., & Chen, H. J. (1968). A comparative study of various tests for normality. Journal of the American Statistical Association, 63(324), 1343–1372. https://doi.org/10.1080/01621459.1968.10480932.
Smirnov, N. (1948). Table for estimating the goodness of fit of empirical distributions. The Annals of Mathematical Statistics, 19(2), 279–281. https://doi.org/10.1214/aoms/1177730256.
Sulewski, P. (2019). Modification of Anderson-Darling goodness-of-fit test for normality. Afinidad, 76(588), 270–277. https://raco.cat/index.php/afinidad/article/view/361876.
Sulewski, P. (2021a). Equal-bin-width histogram versus equal-bin-count histogram. Journal of Applied Statistics, 48(12), 2092–2111. https://doi.org/10.1080/02664763.2020.1784853.
Sulewski, P. (2021b). Two component modified Lilliefors test for normality. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 428–455. https://doi.org/10.24136/eq.2021.016.
Sulewski, P. (2022). Modified Lilliefors goodness-of-fit test for normality. Communications in Statistics – Simulation and Computation, 51(3), 1199–1219. https://doi.org/10.1080/03610918.2019.1664580.
Tavakoli, M., Arghami, N., & Abbasnejad, M. (2019). A goodness of fit test for normality based on Balakrishnan-Sanghvi information. Journal of The Iranian Statistical Society, 18(1), 177–190.
Torabi, H., Montazeri, N. H., & Grané, A. (2016). A test for normality based on the empirical distribution function. SORT, 40(1), 55–88. https://doi.org/10.2436/20.8080.02.35.
Uhm, T., & Yi, S. (2023). A comparison of normality testing methods by empirical power and distribution of P-values. Communications in Statistics – Simulation and Computation, 52(9), 4445–4458. https://doi.org/10.1080/03610918.2021.1963450.
Uyanto, S. S. (2022). An Extensive Comparisons of 50 Univariate Goodness-of-fit Tests for Normality. Austrian Journal of Statistics, 51(3), 45–97. https://doi.org/10.17713/ajs.v51i3.1279.
Wijekularathna, D. K., Manage, A. B., & Scariano, S. M. (2022). Power analysis of several normality tests: A Monte Carlo simulation study. Communications in Statistics – Simulation and Computation, 51(3), 757–773. https://doi.org/10.1080/03610918.2019.1658780.
Yap, B. W., & Sim, C. H. (2011). Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation, 81(12), 2141–2155. https://doi.org/10.1080/00949655.2010.520163.
Yazici, B., & Yolacan, S. A. (2007). Comparison of various tests of normality. Journal of Statistical Computation and Simulation, 77(2), 175–183. https://doi.org/10.1080/10629360600678310.
Zhang, J., & Wu, Y. (2005). Likelihood-ratio tests for normality. Computational Statistics & Data Analysis, 49(3), 709–721. https://doi.org/10.1016/j.csda.2004.05.034.