Artur Zaborski https://orcid.org/0000-0003-1374-2268

© Artur Zaborski. Artykuł udostępniony na licencji CC BY-SA 4.0

ARTYKUŁ

(Angielski) PDF

STRESZCZENIE

The direct determination of dissimilarities is the most popular and most frequently used method for raising input data in nonmetric multidimensional scaling, i.e. when variables are measured on an ordinal scale (e.g. in preference studies). Most methods for the direct measurement of similarities, including ranking, sorting, pairwise comparison, conditional ranking of similarities are, however, very laborious, especially when a large number of objects is tested. Thus, the research described in this article is based on the tetrad method, which is uncomplicated and less burdensome for the respondents.
In the proposed method, respondents are asked to evaluate four-element subsets (tetrads) from a set of n objects. The respondent is asked to indicate the pair with the most and the least similar elements in each tetrad. As the number of tetrads rapidly increases along with the number of objects, it becomes necessary to use the incomplete variant of the method, in which only some four-element subsets are presented to the respondents for evaluation.
The aim of the research presented in the article is to determine the size of the tetrad set that is sufficient to create a dissimilarity matrix used to perform nonmetric multidimensional scaling. The study was based on four distance matrices for 7, 9, 11 and 13 objects that were randomly selected voivodship capitals in Poland. The distances between the cities were expressed in kilometres. The Procrustes analysis and Spearman’s rank correlation were used in the study. The findings show that the use of the tetrad method for the measurement of dissimilarities produces beneficial results already at the point when each pair of objects appears in the set of tetrads only once, which allows the number of opinions provided by the respondents to be significantly reduced.

SŁOWA KLUCZOWE

measurement of dissimilarities, direct indication of dissimilarities, tetrad method, nonmetric multidimensional scaling, Procrustes analysis

JEL

C38, C63, M31

BIBLIOGRAFIA

Bijmolt, T. H. A. (1996). Multidimensional Scaling in Marketing: Towards Integrating Data Collection and Analysis. Capelle a/d Ussel: Labyrint Publication.

Borg, I., & Groenen, P. J. F. (2005). Modern Multidimensional Scaling. Theory and Applications (2nd edition). Springer. https://doi.org/10.1007/0-387-28981-X.

Burton, M. L., & Nerlove, S. B. (1976). Balanced Design for Triads Tests: Two Examples from English. Social Science Research, 5(3), 247–267. https://doi.org/10.1016/0049-089X(76)90002-8.

Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika, 35(3), 283–319. https://doi.org/10.1007/BF02310791.

Cox, T. F., & Cox, M. A. A. (2001). Multidimensional Scaling (2nd edition). Chapman & Hall/CRC. https://doi.org/10.1201/9780367801700.

Coxon, A. P. M, & Davies, P. M. (1982). The User’s Guide to Multidimensional Scaling with Special Reference to the MDS(X) Library of Computer Programs. Heinemann Educational Books.

Guttman, L. (1968). A general nonmetric technique for finding the smallest coordinate space for a configuration of points. Psychometrika, 33(4), 469–506. https://doi.org/10.1007/BF02290164.

Humphreys, M. A. (1982). Data collecting effects on nonmetric multidimensional scaling solutions. Educational and Psychological Measurement, 42(4), 1005–1022. https://doi.org/10.1177/001316448204200408.

Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27. https://doi.org/10.1007/BF02289565.

Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 115–129. http://dx.doi.org/10.1007/BF02289694.

de Leeuw, J., & Heiser, W. (1980). Multidimensional scaling with restrictions on the configuration. In P. R. Krishnaiah (Ed.), Multivariate Analysis V (pp. 501–522). North-Holand.

Mandal, B. N. (2019). ibd: Incomplete Block Designs. www.r-project.org .

Morris, M. D. (2010). Design of Experiments. An Introduction Based on Linear Models. Chapman & Hall/CRC.

Rink, D. R. (1987). An improved preference data collection method: Balanced incomplete block designs. Journal of the Academy of Marketing Science, 15(3), 54–61. https://doi.org/10.1007/BF02721954.

Shepard, R. N. (1962). The analysis of proximities: Multidimensional scaling with an unknown distance function. Part I. Psychometrika, 27, 125–140. https://doi.org/10.1007/BF02289630.

Takane, Y., Young, F. W., & de Leeuw, J. (1977). Nonmetric individual differences in multidimensional scaling: an alternating least squares method with optimal scaling features. Psychometrika, 42, 7–67. https://doi.org/10.1007/BF02293745.

Tsogo, L., Masson, M. H., & Bardot, A. (2000). Multidimensional Scaling Methods for Many-Object Sets: A Review. Multivariate Behavioral Research, 35(3), 307–319. https://doi.org/10.1207/S15327906MBR3503_02.

Zaborski, A. (2003). Wpływ alternatywnych metod pomiaru preferencji na wyniki skalowania wielowymiarowego. Prace Naukowe Akademii Ekonomicznej w Katowicach: Analiza i prognozowanie zjawisk o charakterze niemetrycznym, 55–69.

Zaborski, A. (2020). The Use of the Incomplete Tetrad Method for Measuring the Similarities in Nonmetric Multidimensional Scaling. Folia Oeconomica Stetinensia, 20(1), 519–530. https://doi.org/10.2478/foli-2020-0030.

Zaborski, A. (2022). Triads or tetrads? Comparison of two methods for measuring the similarity in preferences under incomplete block design. Statistics in Transition new series, 23(3), 185–198. https://doi.org/10.2478/stattrans-2022-0037.

Do góry
© 2019-2022 Copyright by Główny Urząd Statystyczny, pewne prawa zastrzeżone. Licencja Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0 (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0