Anna Gdakowicz , Ewa Putek-Szeląg

© Anna Gdakowicz, Ewa Putek-Szeląg. Artykuł udostępniony na licencji CC BY-SA 4.0


(Angielski) PDF


The mass valuation of real estate refers to the simultaneous estimation of the values of a large number of properties using the same method. This method should involve automation that would reduce the human element in the process. The algorithm that meets these requirements is the Szczecin Mass Valuation Algorithm for Real Estate (SAMWN), which was used to determine the values of selected land properties in Szczecin. The article presents a modification of the SAMWN which consists in an objective calculation of the influence of the attributes of a property on its value using dependency coefficients. Various approaches have been proposed to assigning weights to the attributes included in the model. The aim of the study was twofold. Firstly, to identify the coefficients of dependencies that can be used in property valuation based on SAMWN and in the analysis of a property using attributes measured on an ordinal scale. The second aim was to select such a combination of methods for taking into account the influence and weights of attributes which under the SAMWN procedure would produce results closest to property values determined by real estate appraisers.
The study used data on 405 land properties located in Szczecin intended for residential purposes, valued individually by real estate appraisers for the purpose of the research. The study proposes four types of dependency coefficients and their partial values and four ways of including these coefficients in the SAMWN procedure. Additionally, the study assesses six methods of weighing the proposed measures. As a result, 168 ways of measuring the influence of individual attributes on property value were obtained. In order to determine which variants produced values closest to the real values (estimated by real estate appraisers), appraisal error measures were calculated and linear ranking procedures were then adopted to identify the best combination of the applied variants. .
The presented mass valuation algorithm may be applied to the estimation of values of various types of properties. However, it requires the procedure to be adapted to the specific characteristics of the appraised property, i.e. the attractiveness zones should be determined as well as the attributes that are relevant to the specific type of property.


mass real estate valuation, statistical methods, mass valuation algorithm, dependency coefficients, linear ordering


C10, R30


Abidoye, R. B., & Chan, A. P. C. (2018). Improving property valuation accuracy: A comparison of hedonic pricing model and artificial neural network. Pacific Rim Property Research Journal, 24(1), 71–83.

Ahn, J. J., Byun, H. W., Oh, K. J., & Kim, T. Y. (2012). Using ridge regression with genetic algorithm to enhance real estate appraisal forecasting. Expert Systems with Applications, 39(9), 8369–8379.

Alcantud, J. C. R., Rambaud, S. C., & Torrecillas, M. J. M. (2017). Valuation Fuzzy Soft Sets: A Flexible Fuzzy Soft Set Based Decision Making Procedure for the Valuation of Assets. Symmetry, 9(11), 1–19.

Amidu, A.-R., & Boyd, D. (2018). Expert problem solving practice in commercial property valuation: an exploratory study. Journal of Property Investment & Finance, 36(4), 366–382.

Anselin, L. (2002). Under the hood issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27(3), 247–267.

Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications, 39(2), 1772–1778.

Bellotti, A. (2017). Reliable region predictions for automated valuation models. Annals of Mathematics and Artificial Intelligence, 81(1–2), 71–84.

Calka, B. (2019). Estimating Residential Property Values on the Basis of Clustering and Geostatistics. Geosciences, 9(3), 1–14.

Calka, B., & Bielecka, E. (2016). The Application of Geoinformation Theory in Housing Mass Appraisal. In 2016 Baltic Geodetic Congress (BGC Geomatics) (pp. 239–243). IEEE.

Cervelló-Royo, R., Guijarro, F., Pfahler, T., & Preuss, M. (2016). An Analytic Hierarchy Process (AHP) framework for property valuation to identify the ideal 2050 portfolio mixes in EU-27 countries with shrinking populations. Quality & Quantity, 50(5), 2313–2329.

Chen, J.-H., Ong, C. F., Zheng, L., & Hsu, S.-C. (2017). Forecasting spatial dynamics of the housing market using Support Vector Machine. International Journal of Strategic Property Management, 21(3), 273–283.

Chen, Z., Hu, Y., Zhang, C. J., & Liu, Y. (2017). An Optimal Rubrics-Based Approach to Real Estate Appraisal. Sustainability, 9(6), 1–19.

Dimopoulos, T., & Moulas, A. (2016). A Proposal of a Mass Appraisal System in Greece with CAMA System: Evaluating GWR and MRA techniques in Thessaloniki Municipality. Open Geosciences, 8(1), 675–693.

Dmytrów, K., Gdakowicz, A., & Putek-Szeląg, E. (2020). Methods of analyzing qualitative variable correlation on the real estate market. Real Estate Management and Valuation, 28(1), 80–90.

Doszyń, M. (Ed.). (2020). System kalibracji macierzy wpływu atrybutów w szczecińskim algorytmie masowej wyceny nieruchomości. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.

Gabrielli, L., Giuffrida, S., & Trovato, M. R. (2017). Gaps and overlaps of urban housing submarket: Hard clustering and fuzzy clustering approaches. In S. Stanghellini, P. Morano, M. Bottero & A. Oppio (Eds.), Appraisal: From Theory to Practice (pp. 203–219). Springer.

Gatnar, E., & Walesiak, M. (Eds.). (2011). Analiza danych jakościowych i symbolicznych z wykorzystaniem programu R. Wydawnictwo C.H. Beck.

Gdakowicz, A., & Putek-Szelag, E. (2020a). Is It Possible to Overfit the Algorithm? Case Study of Mass Valuation of Land Properties in Szczecin. European Research Studies Journal, 23(SI2), 110–122.

Gdakowicz, A., & Putek-Szeląg, E. (2020b). The Use of Statistical Methods for Determining Attribute Weights and the Influence of Attributes on Property Value. Real Estate Management and Valuation, 28(4), 33–47.

Glennon, D., Kiefer, H., & Mayock, T. (2018). Measurement error in residential property valuation: An application of forecast combination. Journal of Housing Economics, 41, 1–29.

Guan, J., Shi, D., Zurada, J. M., & Levitan, A. S. (2014). Analyzing Massive Data Sets: An Adaptive Fuzzy Neural Approach for Prediction, with a Real Estate Illustration. Journal of Organizational Computing and Electronic Commerce, 24(1), 94–112. .

Han, L., & Zhu, J. (2008). Using matrix of thresholding partial correlation coefficients to infer regulatory network. Biosystems, 91(1), 158–165.

Hellwig, Z. (1968). Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom ich rozwoju oraz zasoby i strukturę wykwalifikowanych kadr. Przegląd Statystyczny, 15(4), 307–327.

Hozer, J., Gnat, S., Kokot, S., & Kuźmiński, W. (2019). The Problem of Designating Elementary Terrains for the Purpose of Szczecin Algorithm of Real Estate Mass Appraisal. Real Estate Management and Valuation, 27(3), 42–58.

Hozer, J., Kokot, S., & Kuźmiński, W. (2002). Metody analizy statystycznej rynku w wycenie nieruchomości. Polska Federacja Stowarzyszeń Rzeczoznawców Majątkowych.

Hui, S. K., Cheung, A., & Pang, J. (2010). A Hierarchical Bayesian Approach for Residential Property Valuation: Application to Hong Kong Housing Market. International Real Estate Review, 13(1), 1–29.

International Association of Assessing Officers. (2019). Standard on Mass Appraisal of Real Property. A criterion for measuring fairness, quality, equity and accuracy.

Jahanshiri, E., Buyong, T., & Shariff, A. R. M. (2011). A Review of Property Mass Valuation Models. Pertanika Journal of Science & Technology, 19(special issue), 23–30.

Kendall, M. G. (1948). Rank correlation methods (4th edition). Charles Griffin & Company Limited.

Kilpatrick, J. (2011). Expert systems and mass appraisal. Journal of Property Investment and Finance, 29(4/5), 529–550.

Kuryj, J. (2007). Metodyka wyceny masowej nieruchomości na bazie aktualnych przepisów prawnych. Wycena. Wartość, Obrót, Zarządzanie Nieruchomościami, (4), 50–58.

Lam, K. C., Yu, C. Y., & Lam, C. K. (2009). Support vector machine and entropy based decision support system for property valuation. Journal of Property Research, 26(3), 213–233.

Lasota, T., Telec, Z., Trawiński, B., & Trawiński, K. (2011). Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing, 17(2), 229–253.

Lin, C. C., & Mohan, S. B. (2011). Effectiveness comparison of the residential property mass appraisal methodologies in the USA. International Journal of Housing Markets and Analysis, 4(3), 224–243.

Lockwood, T., & Rossini, P. (2011). Efficacy in modelling location within the mass appraisal process. Pacific Rim Property Research Journal, 17(3), 418–442.

Ma, X., Zeng, D., Wang, R., Gao, J., & Qin, B. (2018). An intelligent price-appraisal algorithm based on grey correlation and fuzzy mathematics. Journal of Intelligent and Fuzzy Systems, 35(3), 2943–2950.

McCluskey, W. J., & Borst, R. A. (2011). Detecting and validating residential housing submarkets: A geostatistical approach for use in mass appraisal. International Journal of Housing Markets and Analysis, 4(3), 290–318.

McCluskey, W. J., Daud, D. Z., & Kamarudin, N. (2014). Boosted regression trees: An application for the mass appraisal of residential property in Malaysia. Journal of Financial Management of Property and Construction, 19(2), 152–167.

Morano, P., Tajani, F., & Locurcio, M. (2018). Multicriteria analysis and genetic algorithms for mass appraisals in the Italian property market. International Journal of Housing Markets and Analysis, 11(2), 229–262.

Napoli, G., Giuffrida, S., & Valenti, A. (2017). Forms and Functions of the Real Estate Market of Palermo (Italy). Science and Knowledge in the Cluster Analysis Approach. In S. Stanghellini, P. Morano, M. Bottero & A. Oppio (Eds.), Appraisal: From Theory to Practice (pp. 191–202). Springer.

Parker, R. I., Vannest, K. J., Davis, J. L., & Sauber, S. B. (2011). Combining Nonoverlap and Trend for Single-Case Research: Tau-U. Behavior Therapy, 42(2), 284–299.

Pawlukowicz, R. (2010). Wykorzystanie metodyki porządkowania liniowego do określania wartości rynkowej nieruchomości. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 17(107), 377–385.

Polska Federacja Stowarzyszeń Rzeczoznawców Majątkowych. (2008). Powszechne Krajowe Zasady Wyceny (PKZW) – nota interpretacyjna. Zastosowanie podejścia porównawczego w wycenie nieruchomości.

Siegel, S., & Castellan, N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd edition). McGraw-Hill.

Strahl, D. (1978). Propozycja konstrukcji miary syntetycznej. Przegląd Statystyczny, 25(2), 205– 215.

Telega, T., Bojar, Z., & Adamczewski, Z. (2002). Wytyczne przeprowadzania powszechnej taksacji nieruchomości (projekt). Przegląd Geodezyjny, 74(6), 6–11.

Walesiak, M. (2016). Uogólniona miara odległości GDM w statystycznej analizie wielowymiarowej z wykorzystaniem programu R (2nd edition). Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu.

Walesiak, M., & Dudek, A. (2020). The Choice of Variable Normalization Method in Cluster Analysis. In K. S. Soliman (Ed.), Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development During Global Challenges (pp. 325–340). International Business Information Management Association.

Wang, D., & Li, V. J. (2019). Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review. Sustainability, 11(24), 1–14.

Wu, C., Ye, X., Ren, F., & Du, Q. (2018). Modified Data-Driven Framework for Housing Market Segmentation. Journal of Urban Planning and Development, 144(4), 1–15.

Yacim, J. A., & Boshoff, D. G. B. (2018). Combining BP with PSO algorithms in weights optimisation and ANNs training for mass appraisal of properties. International Journal of Housing Markets and Analysis, 11(2), 290–314.

Zeliaś, A. (2002). Some Notes on the Selection of Normalization of Diagnostic Variables. Statistics in Transition, 5(5), 787–802.

Zhang, R., Du, Q., Geng, J., Liu, B., & Huang, Y. (2015). An improved spatial error model for the mass appraisal of commercial real estate based on spatial analysis: Shenzhen as a case study. Habitat International, 46, 196–205.

Zhou, G., Ji, Y., Chen, X., & Zhang, F. (2018). Artificial Neural Networks and the Mass Appraisal of Real Estate. International Journal of Online and Biomedical Engineering, 14(3), 180–187.

Zurada, J., Levitan, A. S., & Guan, J. (2011). A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context. Journal of Real Estate Research, 33(3), 349–387.

Do góry
© 2019-2022 Copyright by Główny Urząd Statystyczny, pewne prawa zastrzeżone. Licencja Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0 (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0