Marta Małecka

(Angielski) PDF


The paper addresses the issue of estimation risk in VaR testing. The occurrence of estimation risk (also called parameter uncertainty) implies that the observed VaR violation process may not fulfil the standard requirements that underpin the testing framework. As a result, VaR tests may reject correct VaR models due to estimation errors committed when predicting the VaR. The paper examines the robustness of VaR tests to estimation risk. The research is based on an observation indicating that certain elements of a forecasting scheme have a significant influence on estimation risk. Thus, the article extends the previous studies to include several more realistic forecasting schemes than those based solely on a fixed window.
The aim of the research is twofold: firstly, to find methods of mitigating the negative impact of estimation risk on VaR tests, and secondly, to provide a comprehensive comparison of VaR testing methods with reference to the issue of estimation risk. The conducted analyses demonstrate that a proper adjustment of the forecasting scheme yields better results in terms of the accuracy of the tests than correcting estimation errors by means of the subsampling technique.


Value-at-Risk, VaR tests, estimation risk, parameter uncertainty


C12, C52, C53, G17


Anderson, T. W., & Darling, D. A. (1952). Asymptotic Theory of Certain “Goodness of Fit” Criteria Based on Stochastic Processes. The Annals of Mathematical Statistics, 23(2), 193–212.

Basel Committee on Banking Supervision. (2017). High-level summary of Basel III reforms. Bank for International Settlements.

Berkowitz, J. (2001). Testing Density Forecasts, With Applications to Risk Management. Journal of Business & Economic Statistics, 19(4), 465–474.

Berkowitz, J., Christoffersen, P., & Pelletier, D. (2011). Evaluating Value-at-Risk Models with Desk-Level Data. Management Science, 57(12), 2213–2227.

Candelon, B., Colletaz, G., Hurlin, C., & Tokpavi, S. (2011). Backtesting Value-at-Risk: a GMM duration-based test. Journal of Financial Econometrics, 9(2), 314–343.

Christoffersen, P. (1998). Evaluating Interval Forecasts. International Economic Review, 39(4), 841–862.

Christoffersen, P., & Pelletier, D. (2004). Backtesting Value-at-Risk: A Duration-Based Approach. Journal of Financial Econometrics, 2(1), 84–108.

Colletaz, G., Hurlin, C., & Pérignon, C. (2013). The Risk Map: A new tool for validating risk models. Journal of Banking & Finance, 37(10), 3843–3854.

Ding, Z., & Granger, C. W. J. (1996). Modeling Volatility Persistence of Speculative Returns: A New Approach. Journal of Econometrics, 73(1), 185–215.

Dumitrescu, E.-I., Hurlin, Ch., & Pham, V. (2012). Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests (HAL Working Papers No. halshs-00671658).

Engle, R. F., & Manganelli, S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Jornual of Business & Economic Statisitics, 22(4), 367–381.

Engle, R. F., & Russel, J. R. (1998). Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. Econometrica, 66(5), 1127–1162.

Escanciano, J. C., & Olmo, J. (2010). Backtesting Parametric Value-at-Risk With Estimation Risk. Journal of Business and Economic Statistics, 28(1), 36–51.

Escanciano, J. C., & Olmo, J. (2011). Robust Backtesting Tests for Value-at-risk Models. Journal of Financial Econometrics, 9(1), 132–161.

Gordy, M. B., & McNeil, A. J. (2018). Spectral backtests of forecast distributions with application to risk management (Finance and Economics Discussion Series No. 2018-021).

Haas, M. (2005). Improved duration-based backtesting of value-at-risk. Journal of Risk, 8(2), 17–38.

Hurlin, Ch., & Tokpavi, S. (2006). Backtesting value-at-risk accuracy: a simple new test. Journal of Risk, 9(2), 19–37.

Kratz, M., Lok, Y. H., & McNeil, A. J. (2018). Multinomial VaR backtests: A simple implicit approach to backtesting expected shortfall. Journal of Banking & Finance, 88, 393–407.

Krämer, W., & Wied, D. (2015). A simple and focused backtest of value at risk. Economics Letters, 137, 29–31,

Kupiec, P. H. (1995). Techniques for Verifying the Accuracy of Risk Measurement Models. Journal of Derivatives, 3(2), 73–84.

Leccadito, A., Boffelli, S., & Urga, G. (2014). Evaluating the Accuracy of Value-at-Risk Forecasts: New Multilevel Tests. International Journal of Forecasting, 30(2), 206–216.

Ljung, G. M., & Box, G. E. P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297–303.

Małecka, M. (2016). Spectral VaR test statistical properties. In M. Papież & S. Śmiech (Eds.), The 10th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio- Economic Phenomena. Conference Proceedings (pp. 102–109). Foundation of the Cracow University of Economics.

Pajhede, T. (2017). Backtesting Value-at-Risk: A Generalized Markov Test. Journal of Forecasting, 36(5), 597–613.

Pelletier, D., & Wei, W. (2016). The geometric-VaR backtesting method. Journal of Financial Econometrics, 14(4), 725–745.

Wied, D., Weiß, G. N. F., & Ziggel, D. (2016). Evaluating Value-at-Risk forecasts: a new set of multivariate backtests. Journal of Banking & Finance, 72, 121–132.

Ziggel, D., Berens, T., Weiß, G. N. F., & Wied, D. (2014). A new set of improved value-at-risk backtests. Journal of Banking & Finance, 48, 29–41.

Do góry
© 2019-2022 Copyright by Główny Urząd Statystyczny, pewne prawa zastrzeżone. Licencja Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0 (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0